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Tunable Fano resonances in the decay rates of a pointlike emitter near a graphene-coated nanowire
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Based on the Lorenz-Mie theory, we derive analytical expressions of radiative and nonradiative transition rates
for different orientations of a point dipole emitter in the vicinity of an infinitely long circular cylinder of arbitrary
radius. Special attention is devoted to the spontaneous decay rate of a dipole emitter near a subwavelength-
diameter nanowire coated with a graphene monolayer. We show that plasmonic Fano resonances associated with
light scattering by graphene-coated nanowires appear in the Purcell factor as a function of transition wavelength.
Furthermore, the Fano line shape of transition rates can be tailored and electrically tuned by varying the distance
between emitter and cylinder and by modulating the graphene chemical potential, where the Fano asymmetry
parameter is proportional to the square root of the chemical potential. This gate-voltage-tunable Fano resonance
leads to a resonant enhancement and suppression of light emission in the far-infrared range of frequencies.
This result could be explored in applications involving ultrahigh-contrast switching for spontaneous emission in
specifically designed tunable plasmonic nanostructures.
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I. INTRODUCTION

The enhancement or suppression of the spontaneous-
emission rate of a quantum emitter induced by its interac-
tion with environment is generally referred to as the Purcell
effect [1–5]. First described in the context of cavity quan-
tum electrodynamics [1], the Purcell effect finds applica-
tions where controlling and manipulating light emission and
absorption in subwavelength structures is crucial [6], such
as single-molecule optical microscopy [7], high efficiency
single-photon sources [8,9], integrated plasmonic amplifiers
[10], microcavity light-emitting devices [11], and so on. In
recent years, there has been a growing interest in manipulating
light emission using nanostructured plasmonic metamaterials
[5,12–17]. Among the possibilities to tailor light-matter in-
teraction at ultrasmall lengths, metallic nanostructures have
been widely explored to concentrate light at subwavelength
scales, owing to the excitation of surface plasmons on metal-
insulator interfaces [12,18–21]. For perfectly plane surfaces,
surface plasmons are nonradiative trapped modes that cannot
be excited directly by incident plane waves of infinite extent.
However, for roughened or grooved surfaces, the surface plas-
mon modes can be coherently excited due to their coupling
with incident photons. Interestingly enough, a dipole emitter
in the vicinity of a plasmonic surface can effectively couple
photons to surface plasmons even for perfectly plane surfaces
[22,23]. In bounded geometries, these trapped modes are said
to be localized and are excited at discrete frequencies that
depend on the geometry of the system [24].

Recently, graphene has become a promising alternative
material to enhance the Purcell factor in subwavelength struc-
tures due to its unique optical properties, such as strong
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localized surface plasmon resonances with relatively lower
losses than noble metals [25,26]. Indeed, due to the finite
skin depths of metals at infrared and optical frequencies and
specific bulk volumetric properties of metallic metamateri-
als, applications using metallic nanostructures are generally
limited by high ohmic losses [27,28]. Conversely, graphene
exhibits strong light-matter interaction in two-dimensional
atomically thin layers of carbon atoms [29], and it also offers
magnetic, electrical, or chemical tunability of its conductivity
from terahertz up to midinfrared frequencies [30–35].

Here, based on the full-wave Lorenz-Mie theory of circular
cylinders [24,36], we analytically study the spontaneous-
emission rate of a point dipole emitter (e.g., an excited atom, a
fluorescent molecule, a quantum dot, or a rare-earth ion) near
an infinitely long circular cylinder with dispersive parameters.
Special attention is paid to the Purcell factor of a pointlike
emitter in the vicinity of a graphene-coated nanowire. By
varying the distance between emitter and cylinder, the radia-
tive decay rate associated with the dipole moment oriented
orthogonal to the cylinder axis is shown to exhibit a Fano line
shape as a function of the emission frequency; conversely, a
dipole moment oriented parallel to the cylinder axis exhibits a
Lorentzian line shape.

First explained in the realm of atomic physics by U.
Fano [37], the Fano effect has become an important tool
for controlling electromagnetic mode interactions and light
propagation at a subwavelength scale, owing to advances
in micro- and nanofabrication techniques [38–44]. For
graphene-coated nanowires, the appearance of a Fano line
shape is a signature of interference between a localized plas-
mon resonance at the graphene coating and a broad dipole
resonance acting as a radiation background [13,38,45]. Recent
studies have already pointed out the electrical tunability of the
Purcell factor using graphene-based nanostructures [14,46,47]
and have shown the presence of asymmetric line shapes in
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the spectra [33,48]. However, the explicit analytical connec-
tion between Fano resonances in the Lorenz-Mie theory of
cylindrical core-shell scatterers [33,36,49] and radiative decay
rates in the vicinity of graphene-coated nanofibers [48] is still
to be established.

In this paper, we formally establish the connection be-
tween Fano resonances in light scattering by graphene-coated
nanowires and the corresponding Purcell factor of a pointlike
emitter. We demonstrate that both the strong enhancement and
suppression of radiative decay rates are associated with plas-
monic Lorenz-Mie resonances, where the Fano asymmetry
parameter is proportional to the graphene chemical potential.
This allows one to control enhancement and suppression of
spontaneous emission by a gate voltage. In addition, due to
their dependence on the Lorenz-Mie coefficients, the ana-
lytical expressions of decay rates can be straightforwardly
generalized to multilayered cylinders [50], and they are ap-
plicable to any range of frequencies, size parameters, and
refractive indices. These analytical expressions are important
to benchmark new numerical tools, such as finite-difference
time-domain methods (FDTD) [51], which in turn can be used
to characterize more complex geometries.

This paper is organized as follows. In Sec. II, we present
the theory regarding the decay rates of a pointlike dipole
emitter near an arbitrary cylinder, whose basic functions for
a core-shell geometry are provided in Appendices A and
B. Section III is completely devoted to a graphene-coated
nanowire. In Sec. III A, we briefly review the light scattering
by graphene-coated nanowires under oblique incidence of
plane waves and calculate approximate expressions for the
scattering efficiencies. The study of a pointlike dipole source
in the vicinity of a graphene-coated nanowire is presented in
Sec. III B, where we show the tunability of Fano resonances
in the Purcell factor via a gate voltage. Finally, in Sec. IV, we
summarize our main results and conclude.

II. DECAY RATES OF A DIPOLE EMITTER IN THE
VICINITY OF A CIRCULAR CYLINDER

Within the quantum-mechanical approach, the spontaneous
emission of a two-level system is well described by the Fermi
golden rule, in which an emitter in the excited state |e〉 decays
exponentially to the ground state |g〉. The corresponding
radiative decay rate of this transition can be written as [2,52]

�rad
d0

∝ |d0 · E(r′)|2ρF(ω), (1)

where d0 is a nonvanishing matrix element of the dipole mo-
ment operator coupling |e〉 to |g〉 and E(r′) is the electric field
amplitude of emitted photon at the emitter position r′ with
energy h̄ω. The quantity ρF(ω) is the final density of photon
states (DOS), which is independent of boundary conditions
and characterizes the spectral density of eigenmodes of the
medium as a whole [6]. Usually, one defines the quantity
ρd0 (ω, r′) ≡ |d0 · E(r′)|2ρF(ω)/|d0|2, which is referred to as
the local density of states (LDOS) and depends on boundary
conditions explicitly [6]. In free space, E(r′) = Evac(r′) is a
plane wave and �rad

d0
= �0 is simply the Einstein A coefficient

for a quantum emitter: �0 ≡ ω3|d0|2/3πε0h̄c3.
In Eq. (1), E(r′) is the solution of Maxwell’s equations

with boundary conditions. In the presence of a scattering body,

FIG. 1. A point dipole emitter in the vicinity of a core-shell
cylinder with inner radius a and outer radius b. The cylinder has
optical properties (ε1, μ1) for the core (0 < r � a) and (ε2, μ2) for
the shell (a � r � b), where ε and μ are the scalar permittivity and
permeability, respectively. The surrounding medium is the vacuum
(ε0, μ0). There are three basic orientations for the electric dipole
moment d0 in relation to the cylinder: two tangential (d0z = d0ẑ
and d0ϕ = d0ϕ̂) and one orthogonal (d0r = d0r̂) to the cylindrical
surface.

one has

E(r′) = Evac(r′) + Esca (r′), (2)

where Esca (r′) is the (returning) field scattered by the scat-
tering body at the position of the emitter. From now on, let
us consider a two-level system located in the vicinity of an
infinitely long cylindrical body, as depicted in Fig. 1. The
scattering plane includes the z axis of the cylinder [24]. In free
space, the electric fields for transverse-magnetic (TM, Hvac ⊥
ẑ) and transverse-electric (TE, Evac ⊥ ẑ) modes expanded in
cylindrical harmonics for r � r ′ are [24]

ETM
vac (r) = E0(sin ζ ẑ − cos ζ x̂)e−ık(r sin ζ cos ϕ+z cos ζ )

=
∞∑

�=−∞
E�

[
sin ζJ�(kr sin ζ )ẑ − ı cos ζJ ′

�(kr sin ζ )r̂

+ � cos ζ
J�(kr sin ζ )

kr sin ζ
ϕ̂

]
, (3a)

ETE
vac(r) = E0ŷe−ık(r sin ζ cos ϕ+z cos ζ )

=
∞∑

�=−∞
E�

[
�
J�(kr sin ζ )

kr sin ζ
r̂ + ıJ ′

�(kr sin ζ )ϕ̂

]
, (3b)

where E� = E0(−ı)�eı(�ϕ−kz cos ζ ), ζ is the angle between the
wave vector and the cylinder axis (0 < ζ < π ), and J�(ρ) is
the cylindrical Bessel function. For clarity, throughout this
paper we omit the time-harmonic dependence e−ıωt , where
ω = k/

√
ε0μ0 is the angular frequency and ı2 = −1.

The field scattered (reflected) by an infinitely long cylinder
of radius b is obtained by solving the vector Helmholtz equa-
tion in cylindrical coordinates, and then using the continuity
of the tangential components of the electromagnetic field. For
the TM polarization, the scattered field in terms of vector
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cylindrical harmonics for an arbitrary ζ is [24]

ETM
sca (r) =

∞∑
�=−∞

E�

{
− bTM

� sin ζH
(1)
� (kr sin ζ )ẑ +

[
aTM

� �
H

(1)
� (kr sin ζ )

kr sin ζ
+ ıbTM

� cos ζH
′(1)
� (kr sin ζ )

]
r̂

+
[
ıaTM

� H
′(1)
� (kr sin ζ ) − bTM

� � cos ζ
H

(1)
� (kr sin ζ )

kr sin ζ

]
ϕ̂

}
, (4)

where H
(1)
� (ρ) is the cylindrical Hankel function of the

first kind. The TE polarization is obtained from Eq. (4)
by replacing the coefficients (aTM

� , bTM
� ) with (−aTE

� ,−bTE
� ).

The Lorenz-Mie coefficients aTM
� , aTE

� , bTM
� , and bTE

� are
explicitly given in Appendix A for a core-shell cylinder [36].

In the classical-electrodynamics approach, which provides
the same result as the Weisskopf-Wigner theory, the radiative
decay rate is associated with the power radiated by an oscillat-
ing dipole normalized to free space [2]. Since the power is pro-
portional to |d0 · E(r′)|2, where E(r′) = ETE(r′) + ETM(r′) is
the local electric field at the emitter position, we have [13,53]

�rad
d0

(r ′, ω)

�0
= 〈|d0 · [Evac(r′, ω) + Esca (r′, ω)]|2〉�

〈|d0 · Evac(r′, ω)|2〉� , (5)

where 〈· · · 〉� = (1/4π )
∫ π

0 dζ sin ζ
∫ 2π

0 dϕ(· · · ) is the angle
average over the incidence (polar) angle ζ and the azimuthal
angle ϕ, with d0 being the electric dipole moment in the
direction d̂0. Note that the same result is obtained by using
Eq. (1). Indeed, on the one hand, the angle average comes
from the total radiated power calculated by integrating the
radial component of the Poynting vector S(r) in the far field
[2]: P = limr→∞ r2

∫
4π

d�S(r) · r̂. On the other hand, in the
quantum-mechanical approach, the angle average comes from
the integration over k-space into which the quantum dipole
emitter is emitting, where ρF(ω) ∝ δ(ωk − ω) [6,15,54]. For
the sake of brevity, the explicit calculation of radiative and
nonradiative decay rates within the framework of the Lorenz-
Mie theory is provided in Appendix B.

Throughout this paper, we have used the same notation as
Refs. [24,36], which is commonly used for light scattering by
an infinite cylinder, where the longitudinal wave number in
relation to the fiber is h = −k cos ζ . For this reason, instead
of integrating over the longitudinal (complex) wave number
h, we integrate over cos ζ . Nonetheless, these two approaches
considering real or complex h are equivalent and have the
same fiber eigenvalue equation (poles) [55], where the guided
mode contribution is derived from the residue [12,52,56].
Here, we emphasize that we are not interested in the separate
calculation of guided mode contribution, whose distinction
from nonradiative contribution is not well defined for lossy
optical fibers [52]. Moreover, for graphene waveguides, the
decay rate near the interface through surface plasmons is
shown to be much larger (by over five orders of magnitude)
than the decay rate through guided modes [14].

III. DIELECTRIC NANOWIRE COATED WITH A
GRAPHENE MONOLAYER

Let us consider a uniform graphene-coated dielectric
nanowire in free space. We assume a dielectric core made

of a lossless material with permittivity ε1 ≡ εd = 3.9ε0 and
radius a = 100 nm. Since the graphene monolayer is a
two-dimensional electromagnetic material and its thickness
is much smaller than the radius of the dielectric core,
we can treat it as a conducting film [28,33,49,57]. Hence,
the graphene monolayer conductivity within the coating
nanoshell is well described by using Kubo’s formula [49,58]:
σ = σintra + σinter, with the intraband and interband contribu-
tions being

σintra = 2ıe2kBT

πh̄2(ω + ıγ )
ln

[
2 cosh

(
μc

2kBT

)]
, (6a)

σinter = e2

4h̄

{
1

2
+ 1

π
arctan

(
h̄ω − 2μc

2kBT

)
− ı

2π
ln

[
(h̄ω + 2μc)2

(h̄ω − 2μc)2 + (2kBT )2

]}
, (6b)

where −e is the electron charge, h̄ is the reduced Planck’s
constant, kB is the Boltzmann’s constant, T is the temperature,
γ is the charge carriers scattering rate, and μc is the chemical
potential. By introducing the finite width of the graphene
monolayer tg, one has a corresponding graphene permittivity
εg = εg(ω,μc, T ), which is calculated by [49]

εg(ω)

ε0
= ı

σ (ω)

ε0ωtg
. (7)

Here, we consider a nanofiber with an infinite length, i.e.,
the finite length L of the core-shell cylinder is such that
L � λ and L � b > a, where λ is the operation wavelength
and b is the outer radius. In practice, the fabrication of
graphene-coated nanowires is realized in the platform of fiber
optics, where a graphene monolayer is wrapped around a
single-mode nanofiber. This nanofiber can be, e.g., a section
with the ends tapered down from a standard telecom optical
fiber [59].

A. Light scattering by a graphene-coated nanowire

Within the full-wave Lorenz-Mie theory, the optical prop-
erties of the graphene-coated nanowire is described by the
scattering, extinction, and absorption efficiencies given by
Eqs. (B2a)–(B2c), respectively. For a while, let us consider
a graphene monolayer permittivity with fixed parameters tg =
0.5 nm, T = 300 K, μc = 0.5 eV, and h̄γ = 0.1 meV [49].
Here, we only consider the infrared regime where the surface
plasmon is unimpeded by surface optical phonons supported
in graphene/dielectric structures [32].

Figure 2 shows the optical efficiencies calculated for a
graphene-coated nanowire in free space illuminated with
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FIG. 2. Light scattering by a dielectric nanowire (ε1 = 3.9ε0) of radius a = 100 nm coated with a graphene monolayer (μc = 0.5 eV,
T = 300 K). The system is illuminated with TM (H ⊥ ẑ) or TE (E ⊥ ẑ) polarized plane waves, with ζ being the angle between the cylinder axis
and the wavevector. The plots show the scattering (Qsca), absorption (Qabs ), and extinction (Qext ) efficiencies for TM and TE-polarized waves
as a function of the wavelength λ. For the TM mode, one has (a) ζ = 90o, (b) ζ = 45o, and (c) ζ = 1o. For the TE mode, one has (d) ζ = 90o,
(e) ζ = 45o, and (f) ζ = 1o. A Fano-like resonance in Qsca is obtained for both illumination schemes, with Fano dips at λTM

inv ≈ 8.88 μm (TM
mode only) and λinv ≈ 12.55 μm, and localized surface plasmon resonance (� = 1) at λres ≈ 16.25 μm. The small peak that appears in Qabs

at λ ≈ 11.52 μm is associated with the quadrupole resonance (� = 2).

plane waves as a function of the wavelength. The range
of size parameters is 0.0063 < kb < 0.63, i.e., the cylinder
radius is subwavelength. For a normally illuminated cylinder
(ζ = 90o), there is a localized surface plasmon resonance at
λres ≈ 16.25 μm for the TE mode [Fig. 2(a)], which is absent
in the TM mode [Fig. 2(d)]. This resonance is associated with
a nonvanishing component of electric field orthogonal to the
cylindrical surface, as one can verify by comparing Figs. 2(a),
2(b), and 2(c) (TM mode) with Figs. 2(d), 2(e), and 2(f)
(TE mode), respectively. Indeed, for grazing angles (ζ ≈ 0),
both TM and TE modes provide the same efficiencies since
the incoming electric field is approximately orthogonal to the
cylinder axis for the TM mode. This is shown in Figs. 2(c)
and 2(f).

The localized surface plasmon resonance and the scatter-
ing antiresonances observed in Fig. 2 can be explained by
the Lorenz-Mie coefficients [13,36,60,61]. In particular, for
subwavelength-diameter cylinders (kb 
 1), only the lower
electromagnetic modes � = 0 and � = ±1 contribute to the
extinction [24]. For the sake of simplicity, let us consider
the normal incidence (ζ = 90o) and a nonmagnetic cylin-
der (μ1 = μ2 = μ0), which leads to aTE

0 = aTM
1 = bTM

1 =
bTE

1 = 0. Note that the decay channels � = ±1 are degenerate
since the cylinder is made of isotropic materials [61]. In the
Rayleigh limit, we have the scattering efficiencies QTM

sca ≈
2|bTM

0 |2/kb and QTE
sca ≈ 4|aTE

1 |2/kb, where the nonvanishing
scattering coefficients are [62]

bTM
0 ≈ −ı

π

4
(kb)2

(
ε

||
eff − ε0

ε0

)
+ O[(kb)4], (8a)

aTE
1 ≈ −ı

π

4
(kb)2

(
ε⊥

eff − ε0

ε⊥
eff + ε0

)
+ O[(kb)4]. (8b)

For a coated cylinder, the Maxwell-Garnett effective permit-
tivities are

ε
||
eff = S2ε1 + (1 − S2)ε2, (9a)

ε⊥
eff = ε2[(1 + S2)ε1 + (1 − S2)ε2]

(1 − S2)ε1 + (1 + S2)ε2
, (9b)

with S ≡ a/b being the thickness ratio. The effective per-
mittivities ε

||
eff and ε⊥

eff are related to electric polarizability
of the cylinder for electric field parallel or orthogonal to the
cylinder axis, respectively. For a graphene-coated nanowire,
one has ε1 = εd, ε2 = εg(ω), and S = 1 − tg/b ≈ 1, since
the graphene monolayer is atomically thin. This leads to the
effective permittivities

ε
||
eff (ω) ≈ εd + 2

tg

b
εg(ω), (10a)

ε⊥
eff (ω) ≈ εd + tg

b
εg(ω), (10b)

which agrees with Ref. [49]. According to Eq. (8b), a strong
localized surface plasmon resonance of TE waves occurs
when Re[ε⊥

eff (ωres)] = −ε0 and Im[ε⊥
eff (ωres)] 
 ε0. This can

be verified not only for TE waves but also for oblique
incidence of TM waves, see Figs. 2(b)–2(f). In addition,
from Eq. (8a), a bulk plasmon excitation may also occur
for TM waves when Re[ε||

eff (ωres)] = 0 and Im[ε⊥
eff (ωres)] �

ε0, which is not the case for our set of parameters. Con-
versely, the plasmonic cloaking of the dielectric cylin-
der by the graphene monolayer occurs when Qsca ≈ 0,
i.e., Re[ε||

eff (ωTM
inv )] = ε0 for normal incidence of TM waves

[Fig. 2(a)] and Re[ε⊥
eff (ωTE

inv )] = ε0 for TM waves at grazing
angles [Fig. 2(c)] or TE waves [Figs. 2(d)–2(f)]. Due to the
presence of factor 2 in Eq. (10a), which is absent in Eq. (10b),
we have ωTM

inv �= ωTE
inv.
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To calculate analytically the frequencies associated with
localized surface plasmon resonances and the plasmonic
cloaking of the dielectric cylinder studied in Fig. 2, we
need a simplified model of graphene conductivity. For
moderate frequencies and large doping, the intraband
conductivity σintra dominates the contribution to graphene
permittivity. Imposing μc � kBT in Eq. (6a), it follows
that σ ≈ σintra ≈ ıe2μc/πh̄2(ω + ıγ ). For our set of
parameters, this Drude-like model of graphene conductivity
is valid in the far-infrared frequencies and beyond
(10 μm < λ 
 12.4 mm), as discussed in Ref. [49].

Let us consider the condition for localized surface plas-
mon resonance and plasmonic cloaking: Re[ε⊥

eff (ω±)] = ±ε0,
where ωres = ω+ and ωinv = ω−. Using the Drude-like model
of graphene permittivity for ω � γ and Eq. (10b), we
obtain [49]

ω± =
√

e2μc

πh̄2b(ε1 ± ε0)
, (11)

where we have considered ε1 = εd > ε0. Thus, in Fig. 2(d),
we have λres ≈ 2πc/ω+ and λinv ≈ 2πc/ω−. Note that Qsca

as a function of frequency exhibits a Fano line shape. Indeed,
for |ω+ − ω−| 
 ω, one can verify that

QTE
sca ∝ (ω2 − ω2

−)2 + (ωγ )2

(ω2 − ω2+)2 + (ωγ )2
≈ (Fγ/2 + ω − ω+)2

(ω − ω+)2 + (γ /2)2
,

(12)

where F = (ω+ − ω−)/(γ /2) ∝ √
μc is the Fano asymmetry

parameter. This Fano resonance occurs due to the interfer-
ence between narrow, localized surface plasmon resonances
excited in the surface of the graphene monolayer and a
broad Lorenz-Mie resonance of the dielectric nanowire. In
particular, one can verify that the cloaking frequency for
normal incidence of TM waves is simply ωTM

inv = √
2ω−, i.e.,

λinv = √
2λTM

inv . In fact, from Figs. 2(a) and 2(c), one has
λinv/λ

TM
inv ≈ √

2.
The plasmonic Fano resonance is strongly dependent on

the local dielectric environment and the geometry of the sys-
tem, even for subwavelength structures [38]. This means that
the overall scattering response depends on the cross sectional
shape of the nanowire. In fact, the breaking of the rotational
symmetry is expected to affect the Fano line shape for thick
layers, leading, e.g., to multiple Fano resonances or the elim-
ination of the Fano dip in light scattering [63]. All the discus-
sion above assumes a nanowire with cylindrical geometry, i.e.,
rotational symmetry. A precise description on how arbitrary
cross sectional shapes of nano- or microwires would affect
the Fano resonance using graphene coatings is a subject for
another study and will be investigated elsewhere. In particular,
the spectral position of the enhancement and/or suppression
of light scattering can be tuned by varying the volume ratio
of plasmonic coating and dielectric core, see Eqs. (10a) and
(10b). Since the thickness tg of the graphene monolayer is
fixed, one could vary the position of the Fano resonance in
the spectra by varying the diameter a of the dielectric core
and/or by considering multiple layers of graphene coatings.

B. Spontaneous-emission rate near a graphene-coated nanowire

Based on the previous discussion, let us consider a point
dipole emitter in the vicinity of a dielectric nanowire of
radius a = 100 nm coated with a graphene monolayer, which
enters into Kubo’s formula with parameters μc = 0.5 eV, T =
300 K, and h̄γ = 0.1 meV. The dipole emitter is located at
distance r′ in a cylindrical coordinate system (Fig. 1), and its
corresponding radiative and nonradiative decay rates are given
in Appendix B, see Eqs. (B1a)–(B1c) and Eqs. (B5a)–(B5c),
respectively. In the midinfrared, the pointlike emitter could
be a nanoemitter such as an artificial atom or a quantum
dot [46,64], where higher-order electric interactions within
the nanostructure can be neglected in comparison to electric
dipole interactions. In particular, it is desirable to have a
finite distance between emitter and the plasmonic coating to
reduce nonradiative contributions. Typically, one considers a
transparent dielectric spacer with small refractive index (e.g.,
a polymeric material) between emitter and the plasmonic
structure, where the former is placed on top of the dielectric
surface [52]. This is a common procedure in biomedical
applications, where the dielectric spacer can even enhance
the radiation efficiency [65]. For the sake of simplicity, we
consider both dipole emitter and graphene-coated nanowire in
free space.

Figure 3 shows radiative and nonradiative contributions to
the Purcell factor as a function of the emission wavelength.
The dipole emitter is located at distance �r = r ′ − b = 5 nm
from the graphene surface. In Figs. 3(a)–3(c), we consider
three basic orientations of electric dipole moment accord-
ing to Appendix B, respectively: d0 = d0r̂, d0 = d0ϕ̂, and
d0 = d0ẑ. Note that a similar signature as the one obtained
in the scattering efficiency Qsca, Fig. 2(d), appears in �rad

r

and �rad
ϕ as a function of λ. The maximum enhancement of

the radiative decay rate �rad
d0

, for all three basic orientations
(�rad

r ≈ �rad
ϕ ≈ 104�0 and �rad

z ≈ 10�0), is achieved at the
plasmon resonance frequency obtained from Eq. (11), i.e.,
λres ≈ 16.25 μm. However, the suppression of the radiative
decay rate that we see in Fig. 3(a) (�rad

r ≈ 10−3�0) and
Fig. 3(b) (�rad

ϕ ≈ 10−4�0), which is related to the plasmonic
cloaking of the dielectric nanowire (Qsca ≈ 0), depends on the
distance �r between emitter and cylinder, and hence cannot
be predicted by the scattering efficiency alone. In addition, the
nonradiative decay rate �nrad

d0
shows a series of narrow peaks

for Re[ε⊥
eff (ω)] > 0, which are due to ohmic losses in the

graphene monolayer and can also be associated with guided
modes within the cylindrical nanobody.

A first conclusion derived from Fig. 3 is that the total decay
rate for a dipolar emitter with dipole moment oriented along
the cylinder axis (�z) is much smaller than the decay rate
of a dipole moment oriented orthogonal to the cylinder axis
(�r ,�ϕ ). For planar metallic surfaces, this effect is usually
explained by the interaction between a real dipole and its
dipole image. For an electric dipole moment orthogonal to
a plasmonic surface, one obtains the enhancement of the
optical response due to constructive interference with its
corresponding dipole image. Conversely, for an electric dipole
moment parallel to the plasmonic surface, the real dipole and
its image are out-of-phase and the interference is destructive,
thus suppressing the optical response. Even at the localized
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FIG. 3. Radiative (�rad
d0

) and nonradiative (�nrad
d0

) decay rates
(normalized to free space) associated with a point dipole emitter in
the vicinity of a graphene-coated dielectric nanowire (μc = 0.5 eV,
T = 300 K) of radius a = 100 nm. The distance between the dipole
emitter and the graphene monolayer is �r = r ′ − b = 5 nm. The
plot shows the decay rates for dipole moments (a) d0 = d0r̂, (b) d0 =
d0ϕ̂, and (c) d0 = d0ẑ. The enhancement and suppression of �rad

d0

(thick line) are due to the excitation of localized surface plasmons.
Conversely, the peaks in �nrad

d0
(thin line) are mainly due to ohmic

losses in association with guided modes within the nanobody.

plasmon resonance wavelength λres ≈ 16.25 μm, the differ-
ence between the decay rates for dipoles with either orthog-
onal or parallel orientation is large, as can be seen in Fig. 4.
Finally, for the present set of parameters, there is no great vari-
ation on the radiation efficiency �d0 ≡ �rad

d0
/(�rad

d0
+ �nrad

d0
)

for 0 < �r < 100 nm. As expected, for kr ′ � 1, one has
�rad

d0
→ �0 and �nrad

d0
→ 0, i.e., �d0 → 1.

In Figs. 3(a) and 3(b), the radiative decay rate exhibits
a Fano-like resonance in the near field due the interference
between a localized surface plasmon resonance and a broad
dipole resonance acting as a background. The position of the

FIG. 4. Decay rates of a dipole emitter near a graphene-coated
dielectric nanowire (μc = 0.5 eV, T = 300 K) of radius a = 100 nm
and permittivity εd = 3.9ε0 as a function of the distance �r between
emitter and cylinder. The emission wavelength is λres ≈ 16.25 μm,
which corresponds to the localized plasmon resonance of the effec-
tive cylinder: Re[ε⊥

eff (λres )] ≈ −ε0. The plots show (a) radiative and
(b) nonradiative decay rates normalized to free space for three dipole
moment orientations, and (c) the corresponding radiation efficiency
�d0 = �rad

d0
/(�rad

d0
+ �nrad

d0
).

maximum enhancement of �rad
d0

coincides with the maximum
of the scattering efficiency QTE

sca at Re[ε⊥
eff (ω+)] ≈ −ε0. This

is explained by the relation between the LDOS and the scat-
tered electromagnetic fields, highlighted in Eq. (5). To discuss
the Fano dip in �rad

r and �rad
ϕ , however, we need approximate

expressions for the radiative decay rates. As can be seen in
Fig. 5, the Fano dip depends on the distance �r between
emitter and cylinder, and this dependence is stronger for
�rad

ϕ . In addition, the electric quadrupole contribution (� = 2),
which appears as a small peak at λ ≈ 11.52 μm in Figs. 5(a)
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FIG. 5. Radiative decay rates related to a dipole emitter in the
vicinity of a graphene-coated dielectric nanowire (μc = 0.5 eV, T =
300 K). The dielectric core has radius a = 100 nm and permittivity
εd = 3.9ε0. The plots show (a) �rad

r and (b) �rad
ϕ as a function of

the emission wavelength and the distance �r between emitter and
cylinder. The enhancement due to the localized surface plasmon
resonance occurs at λres ≈ 16.25 μm for any �r . The suppression
of radiative emission, however, is dependent of �r due to guided
mode contributions near the cylindrical surface.

and 5(b), vanishes for r ′ sufficiently larger than b. This higher-
order mode contribution associated with a subwavelength-
diameter nanobody is mainly related to near-field interactions
between emitter and nanobody.

Let us consider the limiting case kr ′ 
 1, i.e., the sys-
tem composed by cylinder and emitter together is diameter-
subwavelength, and hence can be described as a dipole-type
system [52]. Assuming that the main contribution to the
Purcell factor is achieved at ζ = 90o, and using the approx-
imations J1(ρ) ≈ ρ/2 and H

(1)
1 (ρ) ≈ −2ı/πρ, one has from

Eqs. (B1a)–(B1c), respectively,

�rad
r (r ′, ω)

�0
≈

∣∣∣∣1 +
[
ε⊥

eff (ω) − ε0

ε⊥
eff (ω) + ε0

]
b2

r ′2

∣∣∣∣2

, (13a)

�rad
ϕ (r ′, ω)

�0
≈

∣∣∣∣1 −
[
ε⊥

eff (ω) − ε0

ε⊥
eff (ω) + ε0

]
b2

r ′2

∣∣∣∣2

, (13b)

�rad
z (r ′, ω)

�0
≈ 1, (13c)

where ε⊥
eff (ω) is calculated by Eq. (9b).

The electrostatics analysis that leads to Eqs. (13a)–(13c)
is discussed in detail in Ref. [52], assuming a homogeneous

nanofiber with Re[ε⊥
eff (ω)] = ε > 0. In fact, note that

Eq. (13c) is not valid at the localized surface plasmon
resonance, see Fig. 3(c). We can show, however, that this
approximation can also be applied for Re[ε⊥

eff (ω)] < 0 (plas-
monic cylinder) as long as kb 
 kr ′. The main reason is that
Eqs. (13a)–(13c) are not taking into account the guided mode
contribution (bulk plasmons) related to � = 0 and higher
orders (� � 2). Since the decay rates of guided modes are
exponentially small as a function of k�r [12], their influence
on the radiative contribution can be neglected in the far field.

Let us consider the approximation in Eq. (12), where
we have assumed |aTE

1 |2 ∝ [(ω2 − ω2
−)2 + (ωγ )2]/[(ω2 −

ω2
+)2 + (ωγ )2]. By using Eq. (8b), after some algebra, we

finally have

�rad
r (r ′, ω)

�0
∝ [X(ω) + F+(r ′)]2

[X(ω)]2 + 1
, (14a)

�rad
ϕ (r ′, ω)

�0
∝ [X(ω) + F−(r ′)]2

[X(ω)]2 + 1
, (14b)

where we have defined

X(ω) ≡ ω − ω+
γ /2

, (15)

F±(r ′) ≡ ± b2

r ′2
(ω+ − ω−)

γ /2
. (16)

Since we are interested in the frequency range where the local-
ized surface plasmon resonance occurs, we can consider that
�rad

z has a Lorentzian line shape as a function of ω: (�rad
z −

�0) ∝ �0/(X2 + 1). This Lorentzian line shape is related to
the fact that �rad

z depends only on the TM mode, see Eq. (B1c).
In particular, the approximate prefactors to enter Eqs. (14a)
and (14b) are (1 + b2/r ′2)2 and (1 − b2/r ′2)2, respectively
(with b < r ′). For any dipole moment orientation, the maxi-
mum enhancement of �rad

d0
is achieved for X(ωres) = 0, i.e.,

ωres = ω+, which is defined in Eq. (11). The suppression of
�rad

r and �rad
ϕ occurs when X(ωinv) + F±(r ′) = 0, which leads

to

ω
(±)
inv = ω+ ± b2

r ′2 (ω− − ω+), (17)

where �rad
r (ω(+)

inv ) 
 �0 and �rad
ϕ (ω(−)

inv ) 
 �0.
In Fig. 6 we show that Eqs. (14a) and (14b) are good

approximations for radiative decay rates at the frequency
range of localized surface plasmon resonances. The distance
between point dipole and cylinder is �r = r ′ − b = 80 nm,
which is still smaller than the radius of the dielectric core
a = 100 nm. Note that we choose �r large enough to satisfy
the approximations and small enough to achieve a strong
enhancement of the radiative decay rate (see Fig. 4). Indeed,
even for this value of �r , we obtain �rad

d0
(ωres) ≈ 103�0 asso-

ciated with a large suppression �rad
d0

(ωinv) ≈ 10−3�0 within a
spectral range of width �λ ≈ 2.5 μm.

It should be stressed that some deviations are expected in
the case of imperfections and finite cylinders, mainly related
to variations on guided-mode contributions, ohmic losses in
the near field, and additional scattering by the edges at grazing
angles. However, for subwavelength-diameter cylinders, the
effects of finite length are not expected to deteriorate the
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FIG. 6. Radiative decay rates for a point dipole emitter near a
graphene-coated dielectric nanowire (μc = 0.5 eV, T = 300 K). The
dielectric core has radius a = 100 nm and permittivity εd = 3.9ε0.
The plots show �rad

r and �rad
ϕ for a distance �r = r ′ − b = 80 nm

between emitter and cylinder as a function of λ. The dotted lines
(Fano fit) are approximate curves calculated from Eqs. (14a) and
(14b).

overall radiative contribution in the quasistatic limit, since the
Fano effect induced in the radiative Purcell factor is based on
an integral effect [44], i.e., it depends on the volume ratio of
plasmonic coating and dielectric core. Indeed, as discussed
by Alù et al. [66], the plasmonic cloaking of a thin dielectric
infinite cylinder is not significantly affected by truncation
effects. Since we have unveiled the close relationship between
Lorenz-Mie theory and the decay rates associated with cylin-
drical scatterers, it is expected that a similar conclusion can be
applied to our analysis.

The Fano asymmetry parameter given in Eq. (16) depends
explicitly on the distance �r between emitter and cylinder.
More importantly, we see that F±(r ′) ∝ √

μc, which implies
that both enhancement and suppression of the Purcell fac-
tor can be tuned by the chemical potential. In practice the
graphene chemical potential can be dynamically controlled
by an applied static electric field (gate voltage) through
the graphene/dielectric interface [31,32]. In the case of a
graphene-coated nanowire, the experimental setup is similar
to the one presented in Ref. [32], with a bias electric field
orthogonal to the graphene surface in order to change the
plasmon frequency.

Without any approximation, we show in Fig. 7 the plots of
radiative decay rates associated with a dipole emitter at �r =
10 nm from the graphene-coated nanowire. By increasing the

FIG. 7. Radiative decay rates for a dipole emitter near a
graphene-coated dielectric nanowire of radius a = 100 nm at T =
300 K. The distance between emitter and cylinder is �r = r ′ − b =
10 nm. The plots show the influence of the graphene chemical
potential μc on the Fano line shapes in (a) �rad

r and (b) �rad
ϕ , and on

the Lorentzian line shape in (c) �rad
z at the vicinity of the localized

surface plasmon resonance. The arrows indicate the direction of an
increasing μc.

chemical potential from μc = 0.1 eV to 1.0 eV, we show
that the Fano line shape is blueshifted. At the same time, the
maximum enhancement of decay rates increases two orders
of magnitude for �rad

r (λres) and �rad
ϕ (λres) [Figs. 7(a) and

7(b), respectively] and one order of magnitude for �rad
z (λres)

[Fig. 7(c)]. For a bias electric field orthogonal to the cylinder
axis, one can neglect �rad

z since the applied electric field will
force the electric dipole moment d0 to orient in a direction
parallel to it. In particular, the suppression of radiative decay
rates �rad

r and �rad
ϕ has opposite tendencies as a function

of μc: �rad
r (λinv) decreases whereas �rad

ϕ (λinv) increases with
increasing μc. The small resonance peak that appears for high
frequencies is due to the excitation of an electric quadrupole
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resonance (� = 2) within the plasmonic coating. It is worth
mentioning that our set of parameters does not correspond
to an optimized configuration. It is still possible to combine
the variation on μc and r ′ with lower temperatures in order
to achieve an even stronger enhancement or suppression of
radiative decay rates [48].

IV. CONCLUSION

Using the full-wave Lorenz-Mie solution, we have investi-
gated the spontaneous-emission rate of a dipole emitter in the
vicinity of a graphene-coated nanowire. We have derived ex-
act expressions for the radiative and nonradiative decay rates
for three basic orientations of the dipole moment in relation
to the cylinder. Such analytical expressions can be straightfor-
wardly generalized to circular multilayered cylinders in the
framework of the Lorenz-Mie theory. In the long wavelength
limit, we have calculated approximate expressions for the
radiative decay rate as a function of effective permittivities
associated with the core-shell nanobody. We have explicitly
shown the connection between plasmonic Fano resonances
in light scattering and spontaneous emission of light. More
importantly, the enhancement and suppression of the radiative
decay rate of a point dipole emitter near a graphene monolayer
can be tuned by the graphene chemical potential monitored
by a gate voltage. The Fano asymmetry parameter of radiative
decay rates, which determines the degree of asymmetry of the
Fano line shape, is shown to be proportional to the square root
of the chemical potential and depends strongly on the distance
between dipole emitter and cylinder for a dipole moment
oriented along ϕ direction. For a dipole moment oriented
along z direction, the interaction between dipole emitter and
graphene is weak, leading to a Lorentzian line shape in the
radiative decay rate. The strong dependence of decay rates on
the graphene chemical potential can be explored to enhance or
suppress the radiative decay response of a plasmonic system
by dynamically controlling the Fano resonance via a gate
voltage. As a result, the possibility of tuning and tailoring the
spontaneous-emission rate near a graphene-based metamate-
rial that exhibits an asymmetric Fano line shape could lead to
the engineering of low-loss nanophotonic devices for tunable
single-photon sources. In particular, these results could be ex-
plored in applications involving graphene coatings to achieve
ultrahigh-contrast switching for spontaneous emission in
specifically designed tunable plasmonic nanostructures [21].
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APPENDIX A: LORENZ-MIE COEFFICIENTS FOR
CORE-SHELL CYLINDERS

The Lorenz-Mie coefficients associated with a center-
symmetric core-shell cylinder are calculated from boundary

conditions, reading [36]

aTM
� = ı

μ2

η2J�(η2y)

η0H
(1)
� (η0y)

[
V�PTM

� + C�QTM
�

]
γ�

V�RTM
�

, (A1)

bTM
� = 1

m2

η2J�(η2y)

η0H
(1)
� (η0y)

[
A�PTM

� + QTM
�

]
V�RTM

�

+ J�(η0y)

H
(1)
� (η0y)

,

(A2)

aTE
� = 1

μ2

η2J�(η2y)

η0H
(1)
� (η0y)

[
B�PTE

� + QTE
�

]
W�RTE

�

+ J�(η0y)

H
(1)
� (η0y)

,

(A3)

bTE
� = − ı

m2

η2J�(η2y)

η0H
(1)
� (η0y)

[
W�PTE

� + D�QTE
�

]
γ�

W�RTE
�

, (A4)

where both γ� ≡ � cos ζ and ηq ≡
√

m2
q − cos2 ζ carry the

dependence on ζ , which is the complement of the incidence
angle, with mq = √

εqμq/(ε0μ0) and q = {0, 1, 2}. Note that

η0 =
√

1 − cos2 ζ = sin ζ . The auxiliary functions are

A� = J�(η2x)

Y�(η2x)

[
μ1L

(J )
� (η1x) − μ2L

(J )
� (η2x)

μ1L
(J )
� (η1x) − μ2L

(Y )
� (η2x)

]
,

B� = J�(η2x)

Y�(η2x)

[
ε1L

(J )
� (η1x) − ε2L

(J )
� (η2x)

ε1L
(J )
� (η1x) − ε2L

(Y )
� (η2x)

]
,

C� = μ2
(
1 − η2

2/η
2
1

)
m2η

2
2x

2
[
μ1L

(J )
� (η1x) − μ2L

(Y )
� (η2x)

] ,

D� = ε2
(
1 − η2

2/η
2
1

)
m2η

2
2x

2
[
ε1L

(J )
� (η1x) − ε2L

(Y )
� (η2x)

] ,

V� = J�(η2x)

Y�(η2x)
C�,

W� = J�(η2x)

Y�(η2x)
D�,

A� = J�(η2y)

Y�(η2y)

[
μ2L

(J )
� (η2y) − μ0L

(H )
� (η0y)

μ2L
(Y )
� (η2y) − μ0L

(H )
� (η0y)

]
,

B� = J�(η2y)

Y�(η2y)

[
ε2L

(J )
� (η2y) − ε0L

(H )
� (η0y)

ε2L
(Y )
� (η2y) − ε0L

(H )
� (η0y)

]
,

C� = μ2
(
1 − η2

0/η
2
2

)
m2η

2
0y

2
[
μ2L

(Y )
� (η2y) − μ0L

(H )
� (η0y)

] ,

D� = ε2
(
1 − η2

0/η
2
2

)
m2η

2
0y

2
[
ε2L

(Y )
� (η2y) − ε0L

(H )
� (η0y)

] ,

V� = J�(η2y)

Y�(η2y)
C�,

W� = J�(η2y)

Y�(η2y)
D�,

where x = ka and y = kb, and we have defined the loga-
rithmic derivative function L

(Z)
� (ρ) = Z′

�(ρ)/[ρZ�(ρ)], with
Z� being any special cylindrical function. The remaining

245419-9



ARRUDA, BACHELARD, WEINER, AND COURTEILLE PHYSICAL REVIEW B 98, 245419 (2018)

functions are

FTM
� = 2ıε2

[
πY�(η2y)H (1)

� (η0y)
]−1

m̃2η2η0y2
[
ε0L

(H )
� (η0y) − ε2L

(Y )
� (η2y)

] ,

PTM
�

FTM
�

= V�

(
1 − γ 2

� C�D�

) − V�

(
1 − γ 2

� C�D�

)
+B�(C� − C�),

QTM
�

FTM
�

= A�(V� − B�C�) − A�(V� − B�C�)

+ γ 2
� W�(C�V� − C�V�),

RTM
� = (

A� − γ 2
� C�W�

)[
γ 2

� V�(D� − D�) + B�

(
1 − γ 2

� C�D�

)
−B�

(
1 − γ 2

� C�D�

)] + (
1 − γ 2

� C�D�

)[
A�(B� − B�)

+ γ 2
� W�(V� − B�C�) − γ 2

� W�(V� − B�C�)
]

+ γ 2
� (V� − B�C�)

[
(W� − W�) + D�

(
A� − γ 2

� C�W�

)
−D�

(
A� − γ 2

� C�W�

)]
,

FTE
� = 2ıμ2

[
πY�(η2y)H (1)

� (η0y)
]−1

η2η0y2
[
μ0L

(H )
� (η0y) − μ2L

(Y )
� (η2y)

] ,

PTE
�

FTE
�

= W�

(
1 − γ 2

� C�D�

) − W�

(
1 − γ 2

� C�D�

)
+A�(D� − D�),

QTE
�

FTE
�

= B�(W� − A�D�) − B�(W� − A�D�)

+ γ 2
� V�(D�W� − D�W�) ,

RTE
� = (

B� − γ 2
� D�V�

)[
γ 2

� W�(C� − C�) + A�

(
1 − γ 2

� C�D�

)
−A�

(
1 − γ 2

� C�D�

)] + (
1 − γ 2

� C�D�

)[
B�(A� − A�)

+ γ 2
� V�(W� − A�D�) − γ 2

� V�(W� − A�D�)
]

+ γ 2
� (W� − A�D�)

[
(V� − V�) + C�

(
B� − γ 2

� D�V�

)
− C�

(
B� − γ 2

� D�V�

)]
.

Although it is not obvious, one can demonstrate that

aTM
� = −bTE

� . (A5)

In addition, these coefficients follow the parity relations

aTM
−� = −aTM

� , bTM
−� = bTM

� , (A6)

aTE
−� = aTE

� , bTE
−� = −bTE

� . (A7)

For a coated cylinder normally irradiated with plane waves
(ζ = 90o), Eqs. (A1)–(A4) retrieve the well-known Lorenz-
Mie coefficients for coated cylinders [24]. Indeed, the expres-
sions for arbitrary ζ are simplified, leading to aTM

� |ζ=90o =
bTE

� |ζ=90o = 0 and

aTE
�

∣∣
ζ=90o = m̃2J

′
�(y)α� − J�(y)

m̃2H
′(1)
� (y)α� − H

(1)
� (y)

, (A8)

bTM
�

∣∣
ζ=90o = J ′

�(y)β� − m̃2J�(y)

H
′(1)
� (y)β� − m̃2H

(1)
� (y)

, (A9)

with new auxiliary functions

α� = J�(m2y) − A�Y�(m2y)

J ′
�(m2y) − A�Y

′
�(m2y)

,

β� = J�(m2y) − B�Y�(m2y)

J ′
�(m2y) − B�Y

′
�(m2y)

,

A� = m̃1J�(m1x)J ′
�(m2x) − m̃2J

′
�(m1x)J�(m2x)

m̃1J�(m1x)Y ′
�(m2x) − m̃2J

′
�(m1x)Y�(m2x)

,

B� = m̃2J�(m1x)J ′
�(m2x) − m̃1J

′
�(m1x)J�(m2x)

m̃2J�(m1x)Y ′
�(m2x) − m̃1J

′
�(m1x)Y�(m2x)

,

where m̃q = √
εqμ0/(ε0μq ). In particular, the case of light

scattering by a homogeneous cylinder (ε1, μ1) of radius b can
be readily obtained from the expressions above by imposing
(ε1, μ1) = (ε2, μ2), i.e., A� = B� = 0 [24].

APPENDIX B: RADIATIVE AND NONRADIATIVE DECAY
RATES OF A DIPOLE EMITTER IN THE

VICINITY OF A CYLINDER

Let us calculate the radiative decay rate associated with the
system described in Sec. II by using the full-wave Lorenz-Mie
theory. Using Eq. (5) and recalling that

∫ 2π

0 dϕeı(�−�′ )ϕ =
2πδ��′ , where δ��′ is the Kronecker delta, we obtain for the
three basic dipole moment orientations d0 = d0r̂, d0ϕ̂ and
d0ẑ, respectively:

�rad
r (kr ′)
�0

= 3

2

∞∑
�=−∞

∫ π/2

0
dζ sin ζ

{∣∣∣∣�aTM
� H

(1)
� (kr ′ sin ζ )

kr ′ sin ζ
+ ı cos ζ

(
bTM

� H
′(1)
� (kr ′ sin ζ ) − J ′

�(kr ′ sin ζ )
)∣∣∣∣2

+
∣∣∣∣�(aTE

� H
(1)
� (kr ′ sin ζ ) − J�(kr ′ sin ζ )

kr ′ sin ζ

)
+ ı cos ζbTE

� H
′(1)
� (kr ′ sin ζ )

∣∣∣∣2}
, (B1a)

�rad
ϕ (kr ′)
�0

= 3

2

∞∑
�=−∞

∫ π/2

0
dζ sin ζ

{∣∣∣∣� cos ζ
bTE

� H
(1)
� (kr ′ sin ζ )

kr ′ sin ζ
− ı

(
aTE

� H
′(1)
� (kr ′ sin ζ ) − J ′

�(kr ′ sin ζ )
)∣∣∣∣2

+
∣∣∣∣� cos ζ

(
bTM

� H
(1)
� (kr ′ sin ζ ) − J�(kr ′ sin ζ )

kr ′ sin ζ

)
− ıaTM

� H
′(1)
� (kr ′ sin ζ )

∣∣∣∣2}
, (B1b)
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�rad
z (kr ′)
�0

= 3

2

∞∑
�=−∞

∫ π/2

0
dζ sin3 ζ

[∣∣aTM
� H

(1)
� (kr ′ sin ζ )

∣∣2 + ∣∣bTM
� H

(1)
� (kr ′ sin ζ ) − J�(kr ′ sin ζ )

∣∣2]
, (B1c)

where we have considered Eqs. (3a)–(4), taking into account
both TM and TE modes: Evac = ETM

vac + ETE
vac and Esca =

ETM
sca + ETE

sca. The radiative decay rate of a dipole moment
d0 randomly oriented in relation to the cylindrical surface is
simply the spatial mean: �rad = (�rad

r + �rad
ϕ + �rad

z )/3. Note
that for the z direction, only the TM mode contributes to the
radiative decay rate. Of course, in the absence of cylinder, we
have aTM

� = aTE
� = bTM

� = bTE
� = 0 and hence �rad

r = �rad
ϕ =

�rad
z = �0.

It is worth emphasizing that aTM
� , aTE

� , bTM
� , and bTE

� are the
usual Lorenz-Mie coefficients associated with a cylindrical
scatterer under oblique incidence of plane waves [24,67]. As
a result, one can easily generalize the present calculations
to multilayered cylinders by choosing properly the classical
scattering coefficients a� and b� to enter into Eqs. (B1a)–(B1c)
[50]. Here, we are interested in a single-layered core-shell
cylinder according to Fig. 1 and with scattering coefficients
provided in Appendix A.

The total decay rate, which takes into account radiative
and nonradiative contributions, can be written as �total

d0
/�0 =

1 + 6πε0Im[d0 · Esca
d0

(r′)]/d2
0 k3, where Esca

d0
(r′) is the scatter-

ing part of electric field associated with the dipole source
[5,6]. As a result, the corresponding frequency shift δωd0 in
the transition frequency due to the presence of a nanobody
is δωd0/�0 = 3πε0Re[d0 · Esca

d0
(r′)]/d2

0 k3 [6,68]. Finding an
analytical expression for Esca

d0
(r′) is in general complicated

[2]. However, once we have �rad
d0

as described in Eqs. (B1a)–
(B1c), we can calculate �total

d0
indirectly by using the energy

conservation in the Lorenz-Mie theory [2,13,69]. Indeed, we
recall that the scattering, extinction and absorption efficien-
cies (or normalized cross sections) of a cylindrical scatterer
are [24]

QTM
sca = 2

kb

∞∑
�=−∞

(∣∣aTM
�

∣∣2 + ∣∣bTM
�

∣∣2)
, (B2a)

QTM
ext = 2

kb

∞∑
�=−∞

Re
(
bTM

�

)
, (B2b)

QTM
abs = QTM

ext − QTM
sca , (B2c)

respectively, where the corresponding QTE
sca, QTE

ext, and QTE
abs are

readily obtained by replacing (aTM
� , bTM

� ) with (bTE
� , aTE

� ). For
nondissipative media, one has Re(bTM

� ) = |aTM
� |2 + |bTM

� |2
and Re(aTE

� ) = |aTE
� |2 + |bTE

� |2. As demonstrated in Ref. [2]
for the spherical case, this simple observation allows us to
calculate the total emission rate from the radiative emission
rate in the Lorenz-Mie framework. The main assumption is
that the nonradiative contribution to the spontaneous-emission
rate comes from ohmic losses on the surface of the nanobody.
Lets us consider, e.g., �rad

z . Rewriting Eq. (B1c) and using∑∞
�=−∞ J�(ρ)2 = 1, we obtain

�rad
z (kr ′)
�0

= 1 + 3

2

∞∑
�=−∞

∫ π/2

0
dζ sin3 ζ

{(∣∣aTM
�

∣∣2 + ∣∣bTM
�

∣∣2)∣∣H (1)
� (kr ′ sin ζ )

∣∣2 − 2Re
[
bTM

� H
(1)
� (kr ′ sin ζ )J�(kr ′ sin ζ )

]}
. (B3)

The total decay rate associated with the z component is readily obtained from Eq. (B3) by replacing |aTM
� |2 + |bTM

� |2 with
Re(bTM

� ). Using the same idea for r and ϕ components, after some algebra, we finally have

�total
r (kr ′)

�0
= 1 − 3

2
Re

∞∑
�=−∞

∫ π/2

0
dζ sin ζ

{
�2aTE

�

[
H

(1)
� (kr ′ sin ζ )

kr ′ sin ζ

]2

+ cos2 ζbTM
�

[
H

′(1)
� (kr ′ sin ζ )

]2

− 2ı� cos ζaTM∗
�

H
(1)∗
� (kr ′ sin ζ )

kr ′ sin ζ

[
bTM

� H
′(1)
� (kr ′ sin ζ ) − J ′

�(kr ′ sin ζ )
]

+ 2ı� cos ζbTE∗
� H

′(1)∗
� (kr ′ sin ζ )

[
aTE

� H
(1)
� (kr ′ sin ζ ) − J�(kr ′ sin ζ )

kr ′ sin ζ

]}
, (B4a)

�total
ϕ (kr ′)

�0
= 1 − 3

2
Re

∞∑
�=−∞

∫ π/2

0
dζ sin ζ

{
aTE

�

[
H

′(1)
� (kr ′ sin ζ )

]2 + �2 cos2 ζbTM
�

[
H

(1)
� (kr ′ sin ζ )

kr ′ sin ζ

]2

−2ı� cos ζaTM∗
� H

′(1)∗
� (kr ′ sin ζ )

[
bTM

� H
(1)
� (kr ′ sin ζ ) − J�(kr ′ sin ζ )

kr ′ sin ζ

]
+ 2ı� cos ζbTE∗

�

H
(1)∗
� (kr ′ sin ζ )

kr ′ sin ζ

[
aTE

� H
′(1)
� (kr ′ sin ζ ) − J ′

�(kr ′ sin ζ )
]}

, (B4b)

�total
z (kr ′)

�0
= 1 − 3

2
Re

∞∑
�=−∞

∫ π/2

0
dζ sin3 ζbTM

�

[
H

(1)
� (kr ′ sin ζ )

]2
, (B4c)
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where we have used the sums [52]
∑∞

�=−∞[�J�(ρ)/ρ]2 = 1/2 and
∑∞

�=−∞ J ′
�(ρ)2 = 1/2. Once again, for a dipole moment with

arbitrary orientation in relation to the cylindrical surface, one has the spatial mean �total = (�total
r + �total

ϕ + �total
z )/3. Subtracting

Eqs. (B1a)–(B1c) from the corresponding Eqs. (B4a)–(B4c), we calculate the nonradiative decay rates for each dipole moment
orientation:

�nrad
r (kr ′)

�0
= 3

2
Re

∞∑
�=−∞

∫ π/2

0
dζ sin ζ

{(
aTE

� − ∣∣aTE
�

∣∣2 − ∣∣bTE
�

∣∣2)
�2

∣∣∣∣H (1)
� (kr ′ sin ζ )

kr ′ sin ζ

∣∣∣∣2

+ (
bTM

� − ∣∣aTM
�

∣∣2 − ∣∣bTM
�

∣∣2)
cos2 ζ

∣∣H ′(1)
� (kr ′ sin ζ )

∣∣2
}
, (B5a)

�nrad
ϕ (kr ′)

�0
= 3

2
Re

∞∑
�=−∞

∫ π/2

0
dζ sin ζ

{(
aTE

� − ∣∣aTE
�

∣∣2 − ∣∣bTE
�

∣∣2)∣∣H ′(1)
� (kr ′ sin ζ )

∣∣2

+ (
bTM

� − ∣∣aTM
�

∣∣2 − ∣∣bTM
�

∣∣2)
�2 cos2 ζ

∣∣∣∣H (1)
� (kr ′ sin ζ )

kr ′ sin ζ

∣∣∣∣2}
, (B5b)

�nrad
z (kr ′)

�0
= 3

2
Re

∞∑
�=−∞

∫ π/2

0
dζ sin3 ζ

{(
bTM

� − ∣∣aTM
�

∣∣2 − ∣∣bTM
�

∣∣2)∣∣H (1)
� (kr ′ sin ζ )

∣∣2}
. (B5c)

The corresponding frequency shifts δωr , δωϕ , and δωz

due to the presence of the cylinder are obtained from
Eqs. (B4a)–(B4c), respectively, by replacing (�total

d0
− �0)

with 2δωd0 and Re(. . .) with −Im(. . .).
Equations (B1a)–(B1c) and Eqs. (B4a)–(B5c) are the main

analytical result of this paper. As a limiting case of these
expressions, one can use Refs. [52,70], where a different
approach was applied to calculate the decay rates related to
a dipole emitter on the surface of a homogeneous dielectric
cylinder. We have verified that the expressions above repro-
duce all the plots in Ref. [52] for r ′ = b, ε1 = ε2, and μ1 =
μ2 = μ0. In general, by properly defining the electric Green’s

tensor of the system one can straightforwardly derive the
Purcell factor via the LDOS [6]. Indeed, several approaches
are already available to calculate the Purcell effect regard-
ing a point-dipole emitter in cylindrical geometry using the
standard definition of LDOS [71] or mode decomposition of
the electromagnetic field [72]. Notwithstanding the available
studies, Eqs. (B1a)–(B1c) and Eqs. (B4a)–(B5c) are original
and seem to be the most natural choice for the cylindrical
geometry owing to the explicit connection between decay
rates and Lorenz-Mie theory. For the spherical geometry,
this connection is well known and widely explored in both
classical and quantum-mechanical approaches [2].
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